Постоянная и непостоянная температура тела у животных. Интересные факты о температуре Вопросы для обсуждения

ФГБОУ ВПО «Новосибирский государственный аграрный университет»

Институт заочного образования и повышения квалификации

Кафедра прогрессивных технологий в сельскохозяйственном производстве


По дисциплине: «Экология»

Тема: «Температура и ее роль в жизни организмов»


Студентки заочного отделения

Шелеметьевой Екатерины Ивановны


Новосибирск 2014 г.


Введение

1. Среда обитания

2. Факторы среды обитания

3. Закономерности экологических факторов

4. Температура

5. Температурные адаптации

5.1 Температурные адаптации у растений

5.2 Температурные адаптации животных

6. Основные пути температурных адаптаций

Список используемой литературы


Введение


Организмы, живущие на Земле, очень разнообразны и образуют целые царства и подцарства, которые включают растения, животных, грибы, бактерии, простейших, архебактерии, цианобактерии.

Все эти организмы живут в разных условиях, занимают строго определенное жизненное пространство. Каждый из них для своего нормального развития и размножения требует определенных условий окружающей среды.

Взаимоотношения между организмами и окружающей средой, действие среды обитания на строение, жизнедеятельность, и поведение организмов, зависимость между состоянием среды обитания и благополучием популяций и т.д. изучает наука экология.

Экология - это наука, изучающая отношения организмов (особей, популяций, биоценозов и т.п.) между собой и с окружающей средой их неорганической природой, общие законы функционирования экосистем различного иерархического уровня, среду обитания живых существ (включая человека).

В моем реферате мы рассмотрим, что же такое среда обитания и какую роль играет температура в жизни организмов.


1. Среда обитания


Среда обитания - это та часть природы, которая окружает живой организм и с которой он непосредственно взаимодействует.

Среда - это физические свойства пространства, окружающего растение, животного или человека, то есть температура, освещенность, давление, уровень радиации, подвижность частиц.

Первой средой, в которой возникла и распространилась жизнь, была водная среда. Постепенно живые организмы овладели наземно-воздушной средой, создали и населили почву, специфической средой жизни стали сами живые организмы.

В среде обитания всегда есть очень важные элементы, от которых зависит возможность существования организма и есть компоненты среды, для данного организма безразличные.

Поэтому, кроме понятия «среда обитания», в экологии сложились понятия о факторах среды и условиях существования организмов.


2. Факторы среды обитания


Элементы среды обитания, оказывающие положительное или отрицательное влияние на существование и географическое распространение живых существ, определяют как экологические факторы.

Условно все факторы делят на три группы: абиотические, биотические, антропогенные.

Абиотические факторы - все свойства неживой природы, прямо или косвенно влияющие на живые организмы. Это температура, свет, давление, влажность и т.д.

В рамках темы мы рассмотрим только абиотические факторы, а конкретнее температуру и ее роль в жизни организмов.

Температура очень изменчивый в пространстве и времени экологический фактор. Например, температура сильно варьирует на поверхности суши, но почти постоянна на дне океана и в глубине пещер.

В характере воздействия экологических факторов на организмы и в их ответных реакциях можно выделить определенные закономерности.


3. Закономерности экологических факторов


Первая закономерность - закон оптимума. Каждый фактор имеет определенные пределы положительного влияния на организмы. Границы благоприятного воздействия на организм называются законом оптимума.

Максимально и минимально переносимые значения фактора - это критические точки, за пределами которых существование не возможно.

Схема действия факторов среды на живые организмы представлена на рисунке 1.


Рисунок 1 -Схема действия факторов среды на живые организмы


У каждого вида организмов свои пределы выносливости и оптимальные значения действия факторов среды. Так, песцы в тундре могут переносить колебания температуры воздуха около 80°С (от +30 до -50°С)

Вторая закономерность - неоднозначность действия фактора на разные функции организма. Один и тот же фактор оказывает различное влияние на функции организма.

Так, температура воздуха от +40 до +50°С у холоднокровных животных сильно увеличивает скорость обменных процессов, но тормозит двигательную активность и животные впадают в тепловое оцепенение (анабиоз). Бурый медведь спит при одной температуре, а для активных действий, поиска пищи, размножения ему нужна другая температура.

Третья закономерность - воздействие факторов на организм. Факторы окружающей среды действуют не каждый в отдельности, а взаимно (табл.1). Взаимодействие заключается в том, что изменение интенсивности одного из них может сузить предел выносливости к другому фактору или, наоборот, увеличить его.

Например, оптимальная температура повышает выносливость к недостатку влаги и пищи. Сильный мороз без ветра переносится легче, а в ветреную погоду при сильном морозе велика вероятность обморожения.


Таблица 1 - Взаимодействие факторов

Температура, °СВлажность,%Движение воздуха, м/с17,7 22,4 25100 70 200,0 0,5 2,5

Ощущения организмов одинаковы при разной комбинации трех факторов.

Четвертая закономерность - правило ограничивающего фактора. Если действие фактора выходит за критические точки - пределы выносливости, то существование вида становится невозможным. Например, недостаток тепла препятствует распространению некоторых видов плодовых растений на север (персик, грецкий орех).

Согласно теории Ч.Дарвина все организмы изменчивы и способны к адаптации.

Адаптация - это системы регулирования обменных процессов и физиологических особенностей, обеспечивающих максимальную приспособленность организмов к условиям окружающей среды.

4. Температура


Температуры - это границы существования жизни. В среднем они составляют от 0°С до +50°С. Однако некоторые виды приспособлены к активному существованию при температурах, выходящих за указанные пределы.

Виды, предпочитающие холод (криофилы) сохраняют активность до -10°С. Переохлаждение способны выносить бактерии, грибы, лишайники, мхи, членистоногие. Деревья и растения также преодолевают переохлаждение.

Существует группа организмов, предпочитающих высокие температуры - термофилы. Это черви, насекомые, клещи, обитающие в пустынях, бактерии. Латентные организмы (споры некоторых бактерий, семена растений и т.д.) могут выдержать перегревание до 180°С.

абиотический температура адаптация животный


5. Температурные адаптации


1 Температурные адаптации у растений


Растения неподвижные организмы, поэтому вынуждены приспосабливаться к температурным колебаниям. Они обладают специальными системами, предохраняющими от переохлаждения или перегрева. Например, транспирация - система испарения воды растениями через устьичный аппарат. Некоторые растения приобрели даже устойчивость к пожарам - их называют пирофитами. Так, у деревьев саванн толстая кора, пропитанная огнеупорными веществами.


5.2 Температурные адаптации животных


Животные обладают большей способностью приспосабливаться к изменению температуры, по сравнению с растениями. Они способны передвигаться, обладают собственной мускулатурой и производят собственное тепло.

В зависимости от механизмов поддержания постоянной температуры тела различают:

-пойкилотермных (холоднокровных) животных;

-гомойотермных (теплокровных) животных.

Холоднокровные - это насекомые, рыбы, пресмыкающиеся и земноводные. Их температура тела меняется вместе с температурой окружающей среды.

Теплокровные - животные с постоянной температурой тела, способные ее поддерживать даже при сильных колебаниях наружной температуры. Это млекопитающие и птицы.


6. Основные пути температурных адаптаций


Для того чтобы жить и размножаться в определенных условиях окружающей среды, у животных и растений в процессе эволюции выработались самые разнообразные приспособления и системы соответствия этой среде обитания.

Существуют следующие пути температурных адаптаций:

-химическая терморегуляция - увеличение теплопродукции в ответ на понижение температуры окружающей среды;

-физическая терморегуляция - способность удерживать тепло благодаря волосяному и перьевому покровам, распределению жировых запасов, возможности испарительной теплоотдачи и т.д.

-поведенческая терморегуляция - способность перемещаться из мест крайних температур в места оптимальных температур. Это основной путь терморегуляции у пойкилотермных животных. При повышении температуры они стремятся изменить позу или спрятаться в тень, в нору. Пчелы, термиты и муравьи строят гнезда с хорошо регулируемой температурой внутри них.

Для иллюстрации совершенства терморегуляции у высших животных и человека можно привести такой пример. Около 200 лет назад доктор Ч. Блэгден в Англии поставил такой опыт: он вместе с друзьями и собакой провел 45 мин. в сухой камере при +126 °C без последствий для здоровья. Любители финской бани знают, что можно проводить в сауне с температурой более +100 °C некоторое время (для каждого - свое), и это полезно для здоровья. Но мы также знаем, что, если держать при такой температуре кусок мяса, он сварится.

При действии холода у теплокровных усиливаются окислительные процессы, особенно в мышцах. Вступает в действие химическая терморегуляция. Отмечается мышечная дрожь, приводящая к выделению дополнительного тепла. Особенно усиливается обмен липидов, так как в жирах содержится значительный запас химической энергии. Поэтому накопление жировых запасов обеспечивает лучшую терморегуляцию.

Усиленное производство теплопродукции сопровождается потреблением большого количества пищи. Так, птицам, остающимся на зиму, нужно много корма, им страшны не морозы, а бескормица. При хорошем урожае ели и сосны клесты, например, даже зимой выводят птенцов. У людей - жителей суровых сибирских или северных районов - из поколения в поколение вырабатывалось высококалорийное меню - традиционные пельмени и другая калорийная пища. Поэтому, прежде чем следовать модным западным диетам и отвергать пищу предков, нужно вспомнить о существующей в природе целесообразности, лежащей в основе многолетних традиций людей.

Эффективным механизмом регуляции теплообмена у животных, как и у растений, является испарение воды путем потоотделения или через слизистые оболочки рта и верхних дыхательных путей. Это пример физической терморегуляции. Человек при сильной жаре может выделить до 12 литров пота в день, рассеивая при этом тепла в 10 раз больше нормы. Выделяемая вода частично должна возвращаться через питье.

Теплокровным животным, так же как и холоднокровным, свойственна поведенческая терморегуляция. В норах животных, живущих под землей, колебания температур тем меньше, чем глубже нора. В искусно построенных гнездах пчел поддерживается ровный, благоприятный микроклимат.

Особый интерес представляет групповое поведение животных. Например, пингвины в сильный мороз и буран образуют «черепаху» - плотную кучу. Те, кто оказался с краю, постепенно пробираются внутрь, где поддерживается температура около +37 °C. Там же, внутри, помещаются и детеныши.

Таким образом, среда обитания - одно из ключевых понятий экологии. При оценке влияния факторов среды на живые организмы важным оказывается интенсивность их действия: в благоприятных условиях говорят об оптимальном, а при избытке или недостатке - ограничивающем действии факторов среды (пределы выносливости).

В ходе эволюции и при воздействии меняющихся факторов среды живая природа достигла большого разнообразия. Но процесс не прекратился: меняются природные условия, организмы приспосабливаются к изменившимся условиям окружающей среды и вырабатывают системы адаптации для обеспечения чрезвычайной приспособленности к условиям обитания. Эта способность организмов адаптироваться к изменению среды является важнейшим экологическим свойством, обеспечивающим соответствие между существами и средой их обитания.


Список используемой литературы


Учебная литература

Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Значение температуры состоит прежде всего в непосредственном ее влиянии на скорость и характер протекания реакций обмена веществ в организмах.

Биологические свойства живых организмов, их клеток и клеточных структур, а также белков предопределяют возможность их жизнедеятельности в интервале температур от 0 до 50°С, однако общий температурный диапазон активной жизни на планете значительно шире и ограничивается следующими пределами (табл. 42).

Среди организмов, способных существовать при очень высоких температурах, следует назвать прежде всего бактерии и некоторые термофильные водоросли, населяющие воду источников с температурой 85- 87 °С. Успешно переносят очень высокие температуры (65-

80 °С) накипные лишайники, семена и вегетативные органы пустынных растений (саксаул, верблюжья колючка, тюльпаны), находящиеся в верхнем слое раскаленной почвы. Существует немало видов животных и растений, выдерживающих большие значения минусовых температур. Полярные воды с температурой от 0 до -2° населены разнообразными представителями растительного и животного мира - микроводорослями, беспозвоночными, рыбами, жизненный цикл которых постоянно происходит в таких температурных условиях.

Значительно большие адаптационные возможности существуют у организмов на закономерно повторяющиеся сезонные периоды более низких температур зимнего времени года. Многие растения и животные при соответствующей подготовке успешно переносят в состоянии глубокого покоя или анабиоза предельно низкие температуры на нашей планете от -68 до -70° С (Якутия, Антарктида). В лабораторных экспериментах семена, пыльца, споры растений, нематоды, коловратки, цисты простейших и других организмов, сперматозоиды после обезвоживания или помещения в растворы специальных защитных веществ - криопротекторов - переносят температуры, близкие к абсолютному нулю.

В настоящее время достигнуты успехи по практическому использованию веществ с криопротекторными свойствами (глицерин, полиэтиленоксид, диметилсульфоксид, сахароза, маннит и др.) в биологии, сельском хозяйстве, медицине. В растворах криопротекторов осуществляется длительное хранение консервированной крови, спермы для искусственного осеменения сельскохозяйственных животных, некоторых органов и тканей для трансплантации; защита растений от зимних морозов, ранневесенних заморозков и т. п. Указанные проблемы относятся к компетенции криобиологии и криомедицины и решаются многими научными учреждениями.

Жизнедеятельность большинства организмов, их активность зависит главным образом, от тепла, поступающего извне, а температура тела - от значений температуры окружающей среды и энергетического баланса (соотношения поглощения и отдачи лучистой энергии). Такие организмы называют пойкилотермными (эктотермными). Пойкилотермия (холоднокровность) свойственна всем микроорганизмам, растениям, беспозвоночным и значительной части хордовых.

У представителей двух высших классов позвоночных - птиц и млекопитающих - тепло, вырабатываемое как продукт биохимических реакций, служит существенным источником повышения температуры их тела и поддержания»€е на постоянном уровне независимо от температуры среды. Такие организмы называются гомойотермными (эндотермными). За счет этого свойства многие виды животных способны жить и размножаться при температуре ниже нуля (северный олень, белый медведь, ластоногие, пингвины). Поддержание и сохранение высокой температуры тела у теплокровных организмов осуществляется благодаря активному обмену веществ и хорошей тепловой изоляции, создаваемой густым волосяным покровом, плотным оперением или толстым слоем подкожного жира.

Частным случаем гомойотермии является гетеротермия - разный уровень температуры тела в зависимости от функциональной активности организма. Гетеротермия свойственна животным, впадающим в неблагоприятный период года в спячку или временное оцепенение. При этом высокая температура их тела заметно снижается за счет замедленного обмена веществ (суслики, ежи, летучие мыши, птенцы стрижей и др.).

Пределы выносливости больших значений температурного фактора различны как у пойкилотермных, так и у гомойотермных организмов. Эвритермные виды способны переносить колебания температуры в широких пределах.

Стенотермные организмы живут в условиях узких пределов температуры, подразделяясь на теплолюбивые стенотермные виды (орхидеи, чайный куст, кофе, кораллы, медузы и др.) и на холодолюбивые (кедровый стланик, предледниковая и тундровая растительность, рыбы полярных бассейнов, животные абиссали - области наибольших океанических глубин и т. п.).

Для каждого организма или группы особей существует оптимальная зона температуры, в пределах которой деятельность выражена особенно хорошо. Выше этой зоны находится зона временного теплового оцепенения, еще выше - зона продолжительной бездеятельности или летней спячки, граничащая с зоной высокой летальной температуры. При понижении последней ниже оптимума находится зона холодового оцепенения, зимней спячки и летальной низкой температуры.

Распределение особей в популяции в зависимости от изменения температурного фактора по территории подчиняется в целом такой же закономерности. Зоне оптимальных температур соответствует наибольшая плотность популяции, а по обе стороны от нее наблюдается снижение плотности вплоть до границы ареала, где она наименьшая.

Температурный фактор на большой территории Земли подвержен резко выраженным суточным и сезонным колебаниям, что в свою очередь обусловливает соответствующий ритм биологических явлений в природе. В зависимости от обеспеченности тепловой энергией симметричных участков обоих полушарий земного шара, начиная от экватора, различают следующие климатические зоны:

1. Тропическая зона. Минимальная среднегодовая температура превышает 16 °С, в самые прохладные дни не опускается ниже 0°С. Колебания температуры во времени незначительны, амплитуда не превышает 5 °. Вегетация круглогодичная.

2. Субтропическая зона. Средняя температура самого холодного месяца не ниже 4 °С, а самого теплого - выше 20 °С. Минусовые температуры редки. Устойчивый снежный покров зимой отсутствует. Вегетационный период продолжается. 9-11 мес.

3. Умеренная зона. Хорошо выражены летний вегетационный сезон и зимний период покоя растений. В основной части зоны устойчивый снежный покров. Весной и осенью типичны заморозки. Иногда эта зона подразделяется на две: умеренно теплую и умеренно холодную, для которых характерно четыре времени года.

4. Холодная зона. Среднегодовая температура ниже 0 °С, заморозки возможны даже в течение короткого (2-3 мес.) вегетационного периода. Очень велико годовое колебание температуры.

Закономерность вертикального размещения растительности, почв, животного мира в горных районах обусловлена главным образом также температурным фактором. В горах Кавказа, Индии, Африки можно выделить четыре-пять растительных поясов, последовательность которых снизу вверх отвечает последовательности широтных зон от экватора к полюсу на одной и той же высоте.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

Подобные документы

    История изобретения термометра. Ртутные и спиртовые термометры. Теплоизоляция в жизни человека и животных. Увеличение и уменьшение потерь тепла у человека. Температура тела человека, тепловой баланс. Способы регулирования температуры в животном мире.

    доклад , добавлен 28.11.2010

    Температура - параметр, характеризующий тепловое состояние вещества. Температурные шкалы, приборы для измерения температуры и их основные виды. Термодинамический цикл поршневого двигателя внутреннего сгорания с подводом тепла при постоянном давления.

    контрольная работа , добавлен 25.03.2012

    Средства измерения температуры. Характеристики термоэлектрических преобразователей. Принцип работы пирометров спектрального отношения. Приборы измерения избыточного и абсолютного давления. Виды жидкостных, деформационных и электрических манометров.

    учебное пособие , добавлен 18.05.2014

    Характеристика величины, характеризующей тепловое состояние тела или меры его "нагретости". Причина Броуновского движения. Прародитель современных термометров, их виды. Единицы измерения температуры, типы шкал. Эксперимент по изготовлению термоскопа.

    презентация , добавлен 14.01.2014

    Разработка и совершенствование технологий измерения температуры с использованием люминесцентных, контактных и бесконтактных методов. Международная температурная шкала. Создание спиртовых, ртутных, манометрических и термоэлектрических термометров.

    курсовая работа , добавлен 07.06.2014

    Методики, используемые при измерении температур пламени: контактные - с помощью термоэлектрического термометра, и бесконтактные - оптические. Установка для измерения. Перспективы применения бесконтактных оптических методов измерения температуры пламени.

    курсовая работа , добавлен 24.03.2008

    Методика численного решения задач нестационарной теплопроводности. Расчет распределения температуры по сечению балки явным и неявным методами. Начальное распределение температуры в твердом теле (временные граничные условия). Преимущества неявного метода.

    Температура является важным и часто лимитирующим фактором среды. Распространение различных видов и численность популяций существенно зависят от температуры. С чем это связано и каковы причины такой зависимости?

    Диапазон температур, которые зарегистрированы во Вселенной, равен тысяче градусов, но пределы обитания живых существ на Земле значительно уже: чаще всего от - 200°С до + 100 °С. Большая часть организмов имеет гораздо более узкий диапазон температур, причем наибольший диапазон имеют самые низкоорганизованные существа микроорганизмы, в частности, бактерии. Бактерии обладают способностью жить в условиях, где другие организмы погибают. Так, их обнаруживают в горячих источниках при температуре около 90°С и даже 250 °С, тогда как самые устойчивые насекомые погибают, если температура окружающей среды превышает 50°С. Существование бактерий в широком диапазоне температур обеспечивается их способностью переходить в такие формы, как споры, имеющие прочные клеточные стенки, выдерживающие неблагоприятные условия среды.

    Диапазон толерантности у наземных животных в целом больше, чем у водных (не считая микроорганизмов). Изменчивость температуры, временная и пространственная, является мощным экологическим фактором среды. Живые организмы приспосабливаются к различным температурным условиям; одни могут жить при постоянной или относительно постоянной температуре, другие лучше адаптированы к колебаниям температуры.

    Воздействие температурного фактора на организмы сводится к его влиянию на скорость обмена веществ. Если исходить из правила Вант-Гоффа для химических реакций, то следует заключить, что повышение температуры вызовет пропорциональное возрастание скорости биохимических процессов обмена веществ. Однако в живых организмах скорость реакций зависит от активности ферментов, которые имеют свои температурные оптимумы. Скорость ферментативных реакций зависит от температуры нелинейно. Учитывая все многообразие ферментативных реакций у живых существ, следует заключить, что ситуация в живых системах существенно отличается от сравнительно простых химических реакций (протекающих в неживых системах).

    При анализе взаимосвязей между организмами и температурой окружающей среды все организмы делят на два типа: гомойотермных и пойкилотермных . Такое разделение относится к животному миру; иногда животных подразделяют на теплокровных и холоднокровных .

    Гомойотермные организмы имеют постоянную температуру и поддерживают ее, несмотря на изменение температуры в окружающей среде. Напротив, пойкилотермные организмы не тратят энергию на поддержание постоянной температуры тела, и она меняется в зависимости от температуры окружающей среды.



    Такое разделение имеет несколько условный характер, так как многие организмы не являются абсолютно пойкилотермными или гомойотермными. Многие пресмыкающиеся, рыбы и насекомые (пчелы, бабочки, стрекозы) могут в течение определенного времени регулировать температуру тела, а млекопитающие при необычно низких температурах ослабляют или приостанавливают эндотермическую регуляцию температуры тела. Так, даже у таких "классических" гомойотермных животных, как млекопитающие, во время зимней спячки температура тела понижается.

    Несмотря на известную условность деления всех живущих на Земле организмов на эти две большие группы, оно показывает, что существует два стратегических варианта адаптации к условиям температуры среды. Они сложились в ходе эволюции и существенно отличаются по ряду принципиальных свойств: по уровню и устойчивости температуры тела, по источникам тепловой энергии, по механизмам терморегуляции.

    Пойкилотермные животные являются эктотермными, они имеют относительно низкий уровень метаболизма. Температура тела, скорость физиолого-биохимических процессов и общая активность прямо зависят от температуры среды. Адаптации (компенсации) у пойкилотермных организмов происходят на уровне обменных процессов: оптимум активности ферментов соответствует режиму температур.

    Стратегия пойкилотермии заключается в том, что организмы не тратят энергию на активную терморегуляцию и обеспечивает устойчивость в интервале средних температур, сохраняющихся достаточно длительное время. При выходе параметров температуры за определенные пределы организмы прекращают свою деятельность. Приспособления к меняющимся температурам у этих животных носят частный характер.

    У гомойотермных организмов имеется комплекс приспособлений к меняющимся условиям температуры среды. Температурные адаптации связаны с поддержанием постоянного уровня температуры тела и. сводятся к получению энергии для обеспечения высокого уровня метаболизма. Интенсивность последнего у них на 1 - 2 порядка выше, чем у пойкилотермных. Физиолого-биохимические процессы у них протекают в оптимальных температурных условиях. В основе теплового баланса лежит использование собственной теплопродукции, поэтому их относят к эндотермным организмам. Регулирующую роль в поддержании постоянной температуры тела играет нервная система.

    Стратегия гомойотермии связана с большими энергетическими затратами на поддержание постоянной температуры тела. Гомойотермия характерна для высших организмов. К ним относят два класса высших позвоночных животных: птиц и млекопитающих. Эволюция этих групп была направлена на ослабление зависимости от внешних факторов среды путем повышения роли центральных регулирующих механизмов, в частности, нервной системы. Большинство видов живых организмов являются пойкилотермными. Они широко расселены на Земле и занимают многообразные экологические ниши.

    Реакция конкретного вида на температуру не постоянна и может изменяться в зависимости от времени воздействия температуры окружающей среды и ряда других условий. Другими словами, организм может приспосабливаться к изменению температурного режима. Если тaкое приспособление регистрируют в лабораторных условиях, то процесс обычно называют акклимацией, если же в природных - акклиматизацией. Однако различие между этими терминами лежит не в месте регистрации реакции, а в ее сути: в первом случае речь идет о так называемой фенотипической, а во втором - генотипической адаптации, т. е. адаптации на генетическом уровне. В том случае, если организм не может приспособиться к изменению температурного режима, он погибает. Причиной гибели организма при высоких температурах является нарушение гомеостаза и интенсивности обмена веществ, денатурация белков и инактивация ферментов, обезвоживание. Необратимые нарушения структуры белков возникают при температуре около 60°С. Именно таков порог "тепловой смерти" у ряда простейших и некоторых низших многоклеточных организмов. Адаптации к изменению температур выражаются у них в образовании таких форм существования, как цисты, споры, семена. У животных "тепловая смерть" наступает раньше, чем происходит денатурация белков, вследствие нарушений деятельности нервной системы и других регуляторных механизмов.

    При низких температурах обмен замедляется или даже приостанавливается, происходит образование кристаллов льда внутри клеток, что приводит к их разрушению, повышению внутриклеточной концентрации солей, нарушению осмотического равновесия и денатурации белков. Морозоустойчивые растения выдерживают полное зимнее промерзание благодаря ультраструктурным перестройкам, направленным на обезвоживание клеток. Семена выдерживают температуры, близкие к абсолютному нулю.

    Для химических процессов необходима тепловая энергия. Для сложных биохимических реакций ее требуется особенно много.

    Поэтому жизнь в активном состоянии возможна лишь при достаточно высокой температуре среды. От количества тепла, получаемого организмом, зависят любые физиологические процессы, их интенсивность, а в некоторых случаях и их направление.

    Каковы же температурные условия жизни на Земле. У большинства организмов жизнедеятельность протоплазма возможна в пределах от минус 4 до плюс 40-45°. При постепенном повышении температуры удается повысить теплоустойчивость клеток и организма, но до определенного предела, после которого начинается разрушение ферментов и других белковых соединений, вызывающее смерть. Однако в природе возникли и исключительно теплоустойчивые и теплолюбивые организмы. Как известно, с увеличением глубины температура земной коры повышается. Микробиологи считают, что нижней границей биосферы (т. е. областью земной коры и атмосферы, населенной жизнью) является изотерма в +100°. Особые виды бактерий были найдены в известняках на глубинах до 500 м от поверхности Земли. Эти бактерии жили при +35°.

    Некоторые животные и водоросли могут населять горячие источники, в которых обычные организмы «свариваются» в несколько минут или секунд. Так, например, имеются водоросли, которые растут в горячих озерах при +90°. В некоторых горячих источниках при +81° найдены круглые черви - нематоды; личинки мух - при +69°, а улитки при +47, +50°.

    У организмов, не приспособленных к жизни при постоянно высоких температурах, сопротивляемость нагреванию, конечно, значительно ниже. Но она может меняться и зависит, как выяснилось, от гормональных процессов и от содержания воды и жиров в протоплазме. Клетки животных редко длительное время переносят температуры выше 40°. Но в период покоя, когда снижается содержание воды, теплоустойчивость повышается. Так, например, колорадские жуки во время диапаузы (период покоя, остановки развития у насекомых) выносят в течение часа температуру +58°.

    У микроорганизмов в состоянии покоя (цисты, споры) количество воды уменьшается очень резко, протоплазма становится вязкой, она не подвергается денатурации при температурах кипения воды, а иногда и при + 130, +150° (под давлением).

    Другие организмы, напротив, приспособились к очень низким температурам, к жизни в наиболее холодных районах нашей планеты. Так, в районе полюса холода северного полушария - в Верхоянске - насчитывают до 200 видов растений. Антарктический материк почти совершенно безжизнен; здесь не хватает тепла, нет почвы, и сплошные массы вечного льда покрывают материк. Но на участках, обнаженных ото льда («оазисах»), найдено несколько десятков видов различных беспозвоночных животных и низших растений. Они живут здесь несмотря на то, что минимальные температуры достигают в Антарктиде -80° и ниже.

    Стоит задуматься над тем, почему жизнь прекращается при низких температурах. При нагревании денатурируются белки, а при охлаждении оказалось, что наиболее опасно образование льда в тканях и клетках. Лет 30 назад распространено было мнение, что многие животные, в том числе и позвоночные - рыбы, лягушки, зимой промерзают, а весной вновь оживают. Впоследствии выяснилось, что это не так: кристаллы льда в протоплазме клеток высокоорганизованного животного неминуемо нарушают ее структуру, клетка гибнет.

    Но если клетка теряет воду, устойчивость ее к холоду повышается. Из-за отсутствия воды клетки и ткани не замерзают. Так, например, некоторые относительно примитивные животные - коловратки, тихоходки, нематоды - в высушенном состоянии способны переносить охлаждение вплоть до температур, близких к абсолютному нулю. Такой же выносливостью обладают споры и семена растений.

    Около 20 лет назад было обнаружено очень интересное явление, поразившее биологов. Если быстро погрузить отдельные живые клетки или микроорганизмы в жидкий воздух (около -190°), они мгновенно замерзают, но после оттаивания остаются живыми. Оказалось, что при очень быстром охлаждении вода не кристаллизуется и застывает, как стекло. Это и сохраняет жизнь клеткам.

    Следовательно, не сама низкая температура, а лишь кристаллизация воды губительна для живой системы.

    Микроорганизмы в виде спор, цист, а некоторые и в активном состоянии могут выносить температуру жидких газов (от -180 до -271°). Как показали исследования последних лет, клетки высокоорганизованных животных и растений при определенных условиях тоже могут переносить сверхнизкие температуры. Приведем несколько примеров.

    Клетки из разных тканей животных помещали на некоторое время в раствор глицерина, а после этого переносили в жидкий газ с температурой до -196°. Отогретые после этой процедуры клетки «оживали». Сперматозоиды млекопитающих - быка, барана, кролика и других сохранялись в состоянии анабиоза при температуре около -196° и после отогревания не потеряли способности активно двигаться и оплодотворять яйцевую клетку. В опытах со сперматозоидами быка удалось «оживить» эти клетки после 8 лет пребывания при сверхнизкой температуре.

    Но и без специальных защитных веществ, вроде глицерина, некоторые насекомые, зимующие в высоких широтах, могут переносить глубокое охлаждение. В природе они охлаждаются до -20, -30, может быть, даже -50°. В лаборатории Института цитологии АН СССР постепенно охлаждали зимующих гусениц кукурузного мотылька до -183 и -196°. Самые разнообразные клетки их тела оставались после оттаивания живыми в течение многих недель.

    Что же происходит при такой низкой температуре, почему клетки не погибают? В природе наиболее часто защитой от замерзания является переохлаждение жидкостей тела. Известно, что при некоторых условиях вода не замерзает при 0°. а охлаждается без замерзания до значительно более низких температур. То же происходит и в клетках. В этом состоянии переохлаждения, исследованном подробно у насекомых, животное неподвижно, находится в оцепенении, но остается живым. Личинки жука короеда - заболонника струйчатого оставались, по нашим наблюдениям в природе, мягкими, не замерзшими при температуре от -48 до -55° в течение трех суток.

    Но и кристаллизация жидкостей тела не всегда приводит к смерти. Еще в 1937 году нам удалось установить, что некоторые виды насекомых способны выдерживать замерзание с кристаллизацией жидкостей тела. Например, гусеницы кукурузного мотылька, зимующие в стеблях травянистых растений, при -30° нередко замерзают так, что становятся совершенно твердыми, и сохраняются в течение многих дней, после оттаивания они продолжают жить. В специально поставленных опытах эти гусеницы «оживали» после суточного пребывания в температуре -78° в замерзшем, твердом, как стекло, состоянии.

    Но и эта температура еще не «рекордная» Недавно японские исследователи Асахина и Аоки поставили ряд экспериментов с постепенным охлаждением насекомых и других беспозвоночных - сперва их помещали в температуру -30°, после чего замерзшие животные сразу переносились в -183 или в -196°. После оттаивания некоторые из них оказались живыми. Такую температуру переносили в замерзшем состоянии довольно сложные животные, имея нормальное количество воды в теле.

    В 1961-1962 годах в Институте цитологии АН СССР ставились опыты с глубоким охлаждением большого количества гусениц кукурузного мотылька. Оказалось, что свыше 70% гусениц переживали 25-суточное охлаждение до -78° и около 40% смогли развиваться и превращаться в куколок и бабочек после суточного пребывания при столь низкой температуре. Многие из этих гусениц под влиянием длительного процесса закаливания при температурах около 0° оставались живыми, пробыв 1-2 суток в жидком азоте (-196°).

    Высокоорганизованные животные погибают уже при не значительном понижении температуры тела и не переносят даже небольшого количества льда во внутренних органах. Но высшие растения переносят очень низкие температуры

    Очень интересны, например, опыты, проведенные Тумановым с сотрудниками в Институте физиологии растении АН СССР. Для опыта были взяты ветки различных древесных пород, березы бородавчатой, черной смородины, яблони и других. Срезанные ветви березы закаливались сначала при -5°, а затем каждый день температура зимой понижалась до очень низкой температуры, пока не достигла -60° После этого ветви опускались на двое суток в жидкий азот (-196°) и затем отогревались. Ветви смородины закаливались более длительно и из жидкого азота переносились в жидкий водород (-253°) на два часа, откуда снова в азот, который постепенно испарялся в течение шести суток. В дальнейшем, когда ветви были помещены в воду, почки на ветвях распускались. Без закаливания ветви погибали при -45°. Совсем не выдерживали охлаждения ветви, срезанные летом

    Невольно возникает вопрос, почему живые ткани могут переносить такие низкие температуры, каких не бывает на Земле? Известно, что развитию высокой холодоустойчивости способствует закаливание при низкой температуре, постепенное понижение интенсивности обмена веществ при наступлении зимнего покоя, спячки, в это время уменьшается количество воды, способное превратиться в лед при охлаждении, увеличивается количество веществ, которые препятствуют замерзанию. Но основная причина в том, что клетки могут переходить в состояние анабиоза, при котором временно совсем прекращается обмен веществ. Это состояние наступает при температурах, которые не слишком низки и наблюдаются на Земле. Когда же организм находится в состоянии анабиоза, дальнейшее охлаждение для него уже не имеет существенною значения.

    Приспособление живых существ шло и по другим направлениям - позвоночные, например, приобрели способность сохранять и повышать активность обмена при низких температурах. Так возникла теплокровность, при которой температура тела сохраняется независимо от температуры среды.

    Некоторые виды насекомых, подобно теплокровным животным, могут сохранять активность при морозах до -10° и даже ниже. По-видимому, для этого достаточно тепла, выделяющегося при мышечной работе. Быть может, этому способствует также поглощение инфракрасных лучей Солнца

    Для космической биологии очень интересно изучить, существуют ли физиологические различия между органами и тканями животных, живущих в разном климате. И если такие различия есть, нельзя ли обнаружить их между клетками очного и того же животного, расположенными внутри и на поверхности тела, которая испытывает значительные колебания температуры?

    Очень небольшое количество подобных наблюдений отрывает увлекательные перспективы для будущих исследований.

    Известно, что у арктических и антарктических птиц не покрытая перьями поверхность ног может иметь очень низкую температуру кожи и не страдать при жестоких морозах Установлено, что периферические нервы у арктических птиц и млекопитающих проводят импульсы при более низкой температуре, чем соответствующие нервы у животных, приспособленных к тропическому климату или живущих в лабораторных условиях. Когда берут ткани для культивирования в искусственных условиях от различных грызунов, то оказывается, что клетки их тем дольше сохраняют жизнеспособность при низкой температуре, чем в более суровых условиях жил дикий зверек.

    У растений и животных Арктики и высокогорий способность к активной жизни нередко как бы сдвигается в сторону низких температур по сравнению с их родичами из более теплых мест. Так, в умеренном климате у большинства организмов (кроме, конечно, теплокровных) дыхание прекращается между -5 и -15°. У некоторых же насекомых Арктики дыхание обнаруживается еще при температуре в -26 и -38°. Среди растений только хвойные дышат при еще более низкой температуре.

    В высокогорьях на вечных снегах встречается одноклеточная водоросль (Spherella nivalis), которая покрывает снег красными или зелеными налетами. Лучше всего она растет при +4° и может еще расти при -34°. Таким образом, организмы способны приспосабливаться к самым низким из имеющихся на Земле температурам.

    В лабораторных условиях путем «воспитания» или «закаливания» удается еще более расширить температурные границы жизни. Особенно легко «перевоспитываются» одноклеточные организмы. В опытах профессора Ю. И. Полянского (Институт цитологии АН СССР) инфузории туфельки помещались в воду с температурой около 0°. Сначала они были в очень угнетенном состоянии, некоторые погибли, но другие постепенно «привыкли» и стали размножаться. Потомство таких «закаленных» туфелек оказалось способным переносить в переохлажденной воде температуру до -15° (до закаливания они выдерживали температуру лишь немного ниже 0°). Процессы закаливания хорошо изучены у растений и у некоторых животных. При этом удается «приучить» организмы к температурам более низким, чем бывает на Земле. Естественно допустить, что температурные условия гораздо более суровые, чем на нашей планете, не могут быть препятствием для жизни.

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .